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Let A be a regular factorial ring which is a ring of quotients of some 
3-dimensional finitely generated C-algebra. The examples we are keeping in mind 
are A = C[tl, t2, t3] =polynomial ring in 3 variables and A = e~;x= local ring of a 
smooth closed point x on a complex algebraic 3-fold X. 

Now given a height-2 prime q C A  there does not exist in general a height-1 prime 
p C q  such that A l p  is factorial, because if there was such a p, the ideal q would 
be generated by 2 elements. However we will prove that: 

Corollary 1. Any  height-2 prime q C A contains a height- 1 prime p C q such that A / p  
is normal and the class group C(A/p) is cyclicly generated by q/p. 

Analogously, given a smooth connected curve C in the complex projective space 
~3, there does not exist in general a smooth surface S containing C and having 
Picard number Q(S) = 1, because if there was such an S, the curve C would be a com- 
plete intersection. However it will follow that: 

Corollary 2. Any  smooth connected curve C in [[33 lies on a smooth surface SC ~3 
with Q(S)= 2 such that the Picard group Pic(S) is generated by C together with the 
hyperplane section. 

Both corollaries will be consequences of the following: 

Theorem. Let W be a smooth complex projective 3-fold and BC W a reduced curve. 
Then there exists an irreducible normal surface T C W  containing B, with 
Sing(T) C Sing(B) and such that one has an exact sequence 

m 

O-~Pic(W)--~C(T)~(~ 7/[B~I ~ 0  
i=1  

where B1,.. . ,  Bm are the irreducible components o f  B. 
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Note that the existence of a normal TCB with Sing(T)CSing(B) is well known 
and is an easy consequence of the classical Bertini theorem (see [1 ;5]); the new infor- 
mation in the Theorem is that concerning the class group. 

The above statements will be proved in Sections 1 and 2. 
In Section 3 we make some variations on the Theorem and give further 

applications. 

1. Proof of  Corollary 2 

In this section we assume the Theorem holds and we prove the corollaries. Cor- 
ollary 2 is clear. To prove Corollary 1, suppose A = S-IA 1 where A l is a finitely 
generated C-algebra and SCAI is a multiplicative system. Put Xl = Spec(Al), and 
X0=Reg(Xl) ;  then the image of Spec(A)=X~Xl  will be contained in X 0. Let 
YCXo be the irreducible curve defined by q in X0. By Hironaka's resolution of 
singularities, X0 is contained as a Zariski open set in a smooth projective 3-fold W. 
Let B be the closure of Y in W. Now choose a surface TC W as in the Theorem, 
denote by p the prime ideal in A corresponding to T and consider the surjective map 

Pie(W) • Z[B] = C( T) ~ C(A/p). 

To conclude, it is sufficient to note that Pic(W)--,C(A/p) factorizes through 
Pic(X) =0. 

2. Proof of the Theorem 

In this section we prove the Theorem. 
By Hironaka's  embedded resolution of singularities (but in fact the embedded 

resolution in [9, p. 218] will suffice) there exists a propermorphism g:  V ~  W where 
V is a smooth projective 3-fold such that if we put R=Sing(B),  E=g-I(R) and 
C=st r ic t  transform of B, then E is a divisor, C- ,B  is a normalization and 
g : V \ E ~ W \ R  is an isomorphism. Let Cl,...,Cm be the components of C 
(Ci=normalization of Bi). Let f :  U-*V be the blowing up of V along C, 
Zi =f-l(Ci), Z=Z1 t.)... O Zm and choose a very ample divisor H on V. Let 
El, . . . ,  Er be the irreducible components of E and G1,. . . ,  Gr their strict transforms 
on U. Put [pN = in f .  H _  Z I v. 

We need the following: 

Lemma. In f ' H -  Z [ is very ample for n ~ O. 

Proof.  Note first that In f ' H - Z [  is base point free for n ~,0. Indeed this linear 
system certainly has no base points outside Z provided n ~ 0. Now if x e Z and 
y =f(x) ,  then x may be identified with a plane P contained in the Zariski tangent 
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space TyV and containing TyC. Since C is smooth, there exists a germ of smooth 
surface around y, passing through C and not tangent to P. Finally by Serre's 
theorem on global generation applied to the twisted ideal sheaf of C, the above germ 
lifts to a global surface in I nH[ which passes through C and is not tangent to P 
at y; this surface will correspond to a member of In f ' H -  Z I not passing through x. 

Now if no and nl are integers such that Ou(nof*H-Z)  and Ov(n lH-Kv)  are 
spanned by global sections then, L¢= O v ( n f * H - f * K v - 3 Z )  is spanned by global 
sections provided n>_3no+n~. Since the image of the corresponding morphism 
U- , I~]  v clearly has dimension 3 we get by the Grauert-Riemenschneider 
vanishing theorem [6], [11] that H2(U,S- I )=o ,  hence by Serre's duality 
H ~ (~u(n f*H-  2Z)) = 0. 

Let us show that In f ' H -  Z I separates tangent vectors on U for n >> 0 (in the same 
way one may prove it separates points and we will be done). Take x e U and 

te TxU. 
If  x~Z ,  choose Do~l(n-1)f*H-Z) with x~Do and choose a0~lHI with 

y =f(x) ~ Ho and (Txf)(t) ~ TyHo. Then D = f ' H 0  + Do contains x and is not tangent 
to t. If x e Z  and t~TxZ, choose Die  Jnf*H-2ZI with x~D1. Then D = D 1 + Z  
contains x and is not tangent to t. Finally if x e Z  and t e  TxZ, consider the exact 
sequence 

m 

n°(  ~qu(nf*H- Z ) ) ~  (~ H°( ©z,(nf*n- Zi)) ~ Hl ( ~U(nf*H- 2Z)) = 0 
i = 1  

and we are done because Ozi(nf*H-Zi) are very ample for n->0 [7, p. 385]. 

Now returning to the proof of the Theorem, if F is a fibre of Z- - 'C  one gets 
(F. n f ' H -  Z) = 1, hence in the embedding UC IP N the fibres F are straight lines. 
We claim there is a non-empty Zariski open set A~ of hyperplanes in ~pN meeting 
transversally every fibre F; indeed the set of hyperplanes in /pN containing a fibre 
is an (N-2)-p lane  in #N (=  dual space of [pN) hence the set of  hyperplanes con- 
taining at least a fibre of Z---,C is an ( N -  1)-dimensional subset of ~N. Let A2 be 
a non-empty Zariski open set in 15N whose members have an irreducible intersec- 
tion with each G i. Now choose a member D of In f ' H - Z I  which is generic (in 
Weil's sense) over thefield of definition of all varieties and morphisms appearing un- 
til now. Since D~A1,  it is easy to see that the projection D--*S=f(D)~ InH[ is an 
isomorphism. Now for n->0 (if W= V=IP 3, then n _ 4  will suffice) we have 
h2'°(D)=h2'°(S)>h2'°(V)=h2'°(U). We will apply Noether's theorem in 
Lefschetz' form: 

Theorem ([8] and [10, p. 264]). I f  X is a smooth projective 3-fold, A is a very ample 
linear system on it and Y is a member of  A which is generic in Weil's sense and i f  
h2'°(Y)> h2'°(X), then the restriction map Pic(X)~Pic(Y)  is an isomorphism. 

In our case Pic(U)-)Pic(D) is an isomorphism. Furthermore since D e A 2, S o g  i 
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are irreducible. Clearly T= g(S) is normal with Sing(T)C R and S \ E =  T \ R .  The 

exact sequence 

m 

O~ Pic( V)--, Pic(U) ~ (~) ZIZi] ~ 0  
i = l  

together with the isomorphisms Pic(S) = Pic(D)= Pic(U) yield a commutative 
diagram with exact rows and columns: 

0 

r 

@ z[ j] 
j = l  

1 
r 

G ZtSnE I 
jffil 

1' 
0 

0 

, Pic(V) 

, Pic(S) 

1 
m 

zIG] 
i=l 

' Pic(W) ' 0 

, C ( T )  , 0  

0 

A diagram chase immediately yields the exact sequence appearing in the Theorem. 

3. Applications 

In this section we make some further discussion and give some more applications. 

Proposition 1. Let A be a (possibly non-complete) linear system on a smooth com- 
plex projective variety W, let ~ : W o---> [P be the associated rational map and sup- 

pose that 
(1) dim ~ ( W ) >  3. 
(2) There exists a non-empty Zariski open subset A l in A all o f  whose members 

are irreducible and normal. 
Then there exists a non-empty Zariski open subset Ao o f  A l such that f o r  any 

T~ A o the cokernel o f  the map P i c ( W ) ~ C ( T )  is finitely generated. 

Proof. Let B be the base locus of A.  By Hironaka's resolution of singularities, there 
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exist morphisms f :  U o  W and g : U-* [P such that g = ¢ of ,  where U is smooth pro- 
jective and U \ f - l ( B ) o  W \ B  is an isomorphism. Now by Bertini's theorem there 
exists a Zariski open subset A2 of hyperplanes H in [P such that for HeA2,  
S=g*H is smooth and contains no component of f - l (B) .  Put T=f(S) and 
Ao=AI NA2. Then for HeAo,  SN(U\ f - I (B ) )  is dense in S and isomorphic to 
TN(W\B) ;  in particular S is irreducible. Since dim g(U)>_ 3 and Or(S) is spanned 
by global sections it follows by the Grauert-Riemenschneider vanishing theorem [6], 
[11] that Hi(ou(-S))=O for i=1 ,2 ,  so f l :Hl(~v)~Hl(Os)is  an isomorphism. 
But fl is the tangent map of a : P ic°(U)~Pic°(S)  at the origin of Pic°(U) so a is an 
isogeny, in particular it is surjective. By the Neron-Severi theorem we get that 
coker(Pic(U)~ Pic(S)) is finitely generated. Now coker(Pic(W)--* C(T \ B)) being a 
quotient of the previous coker is also finitely generated. Finally C(T) is finitely 
generated because it is an extension of C(T\B)  by some finitely generated group 
and we are done. 

To apply Proposition 1 consider a smooth complex projective 3-fold W, a very 
ample divisor H on W and a closed subscheme B of dimension I in W. Let I n H -  B I 
be the largest linear subsystem of I nHI having scheme-theoretic base locus B and 
put 27= {xeB, dim T~B_ 3}. The following is an easy consequence of Bertini type 
results in [1,5]: 

Remark. The conditions below are equivalent: 
(1) B is contained in a normal surface TC W. 
(2) dim 27 = 0. 
(3) For n~,0 there exists a non-empty Zariski open subset of [nH-B I all of 

whose members are normal. 

So if dim 27= 0 and n ~, 0, the above Proposition 1 applies to A = [nH- B] and 
we can ask what is the generic rank of coker(Pic(W)~ C(T)) when T runs through 
the set of  normal members of ]nH- B I. By Proposition 1 this rank is finite and the 
proof of the Theorem shows for instance that 

generic rank = number of components of B 

provided B is a smooth curve. Genericity is understood here in Weil's sense. 
In the end we will show how using the same type of arguments as in Sections 1 

and 2 (and in fact easier ones) one may compute the minimum rank of class groups 
for members of non-complete linear systems in 3-space having zero-dimensional 
base locus. Here is an 'affine'  application (A being as in Corollary 1): 

Proposition 2. Let r >_ 2 be a natural number and MC A a height-3 prime ideal. Then 
there exists a prime element x ~ M r \ M  r +l such that A/xA is factorial. Suppose 
furthermore A = C[ t l ,  t2, t3] and Lrx is the C-vector space of all polynomials of the 
form 
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F " F r + F r + I + ' " + F r +  s 

where s >_ 0 and Fj is homogeneous o f  degree j. I f  F is generic in L~s (in Well's 
sense), then 

0 i f  s>-2, 
C(A/FA) = 7/r2+ r -  l i f  s = 1, 

~ J@(7//r7/) i f  s=O 

where J is the Jacobian o f  the curve Proj(A/FA). 

The above statement about  C[h,  t2, t3] is a very special case of  a problem raised 
by Dolgachev [3]. Case s = 0 is of  course well known. Case s = 1 is also classical. 

P roof .  Choose a smooth projective variety W and morphisms Spec(A)--) 
Reg(Spec(A1))C W as in Section l (if A = C[q, t2, t3], take 

W =  [p3 = Proj(C[t0, q ,  t2, t3])). 

Choose a very ample divisor H o n  W (if W =  [p3, take H e  10(I)I) and let f :  U--) W 
be the blowing Up of W at the point y corresponding to M. Denote by YC U the 
exceptional plane. It is easy to see that  I f * H -  Y I is base point free and that there 
exists an integer n o such that In f ' H - Y I  is very ample on U provided n >_no, 
hence for any r>- l  and n _ n o + r - l ,  [ n f * H - r Y  I is very ample (for ( W , H ) =  
([p3, 0 0 ) )  it is sufficient to take n0=2) .  Choose as in Section 2 a Weil generic 
member  S ~ In f ' H -  Y I, n >- n o + r -  I. By genericity S f'l Y must be irreducible. 
Now we have an exact sequence 

O--) H2( Ou)--) H2( Os)--) H3 ( Ou(- S))--+ H3 ( ~u)--)O 

and we also have 

d im(H 3 ( O u ( -  S))) = d im(H°(Ou( f* (Kw + nil)  - ( r -  2) Y))) 

which obviously goes to 0o when n--)oo. Put  T=f(S): since S N  Y has degree r in 
Y, T has multiplicity r in y. Now exactly as in Section 2 we get an exact sequence 

O--. Pic( W)----, C( T)~G--,O 

where G = coker(Pic(U) ~ Pic(S)). Recall that  by Lefschetz's theory [2], G is finitely 
generated and torsion free. If  n~.0  we have h2'°(S)>h2'°(U) (for ( W , H ) =  
([p3, 0(1)) it is sufficient to take n >-r+ 2), hence G = 0. I f  x is the prime element in 
A corresponding to 7", the surjection C(T)--,C(A/xA) yields exactly as in Section 
1 facoriality of  A/xA.  

Now suppose A = C[q,  t2, t3]. The case when F is homogenous being well known, 
we suppose s_> 1. Since S is generic, the intersection T N P  between T and the 
hyperplane P given by the equation t0=0  is irreducible, so we have an exact 
sequence 
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Z[TNP] B~ C(T)..+C(A/FA)_.+O" 

Since I m ( a ) =  Im(/~), we get C(A/FA)= G, so C(A/FA)=Z e-2 where ~) =~)(S). 
We have already seen that  Lo = 2 for n > r + 2. Now for n = r + 1, T has degree r + 1 

and an r-tuple point. Such surfaces are very classical beings. Project ion from the 
r-tuple point gives their rationality. Finally the adjunction formula gives 
(KZ)=-rZ-r+9, so #(S)=lO-(K~)=r2+r+ 1 and we are done. 

Final Remark. Most of  what we did in this paper for curves, surfaces and 3-folds 
holds in the higher-dimensional case with essentially the same proofs. One has to 
replace 

"3- fo ld"  by "mani fo ld  of  dimension ___ 3" ,  

"sur face"  by "hypersur face" ,  

" cu rve"  by "reduced subscheme of  pure codimension 2" .  

Then the statement of Corollary 1 remains unaltered; however in Corollary 2 and 
in the Theorem the conclusions about  the singular locus of  the hypersurface will fail. 

Note. The case s _  2 in our Proposi t ion 2 from Section 3 was previously obtained 
by J. Koll~tr (1982, unpublished) as we found out after submitting the manuscript.  
J. Koll/tr also proved the existence of  certain factorial rational double points using 
moduli of  K3 surfaces. 
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